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Abstract---Convective burning is commonly identified in the literature as the key step in 
deflagration-to-detonation transition (DDT) of granular explosives. The prevalent physical picture of 
convective burning is of rapid and deep penetration of hot gases which controls the propagation rate via 
convective heat transfer. This investigation includes a review of relevant literature, new transient 
measurements of permeability at high pressures, and analysis of the experimental results. Results presented 
here show that deep penetration (many particle diameters) of gas at high velocities is not physically 
plausible for the low porosity granular beds of interest. The measured permeabilities are consistent with 
measurements made at lower pressures in similar materials, but are significantly lower than predictions 
based on beds of spherical particles. The important time and space scales of this experiment are identified. 
The interface region between the reservoir and porous bed is analysed. The wave hierarchy of the 
permeation experiment is studied, and short- and long-time limits are investigated using simplified 
asymptotic analysis. The low-speed flow approximation is also considered for flow within the bed. It is 
shown that drag dissipation terms in the energy equation cannot be neglected under adiabatic conditions 
as is commonly done. These results indicate that compaction processes play a larger role than commonly 
thought, and motivate the consideration of an asymptotic large drag limit of two-phase, two-velocity 
models. Published by Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

Def lagra t ion- to-detonat ion  transit ion (DDT)  has been responsible for  both accidental and 
intentional  detonat ions  since explosive materials were first used. After  more  than 50 years o f  
scientific research, quanti tat ive prediction of  D D T  is still not  generally possible. In  some cases, 
observed phenomena  cannot  even be qualitatively linked to known physical processes. Unless these 
processes are unders tood,  it will be difficult to design and implement better safety measures. 

Because o f  the numerous  dependent  processes and scales present in this problem, the mechanisms 
and parameters  exerting the greatest influence need to be clearly identified and more  thoroughly  
studied. Only  then can there be hope o f  developing a tractable, predictive model.  To determine 
the relative impor tance  o f  different mechanisms, it is essential to quantify the temporal  and spatial 
scales o f  the various processes. In  this paper  we address the step in a D D T  event that  is a lmost  
universally cited as being the most  crucial element; that  is, convective burning. 

First, the relevant literature is reviewed. Then, results f rom permeat ion experiments in 
low-porosi ty  granular  beds are presented and analysed. These results quantify the temporal  and 
spatial scales o f  the permeat ion expected to occur during convective burning in low-porosi ty 
granular  beds. The results indicate that the convective burning flame structure must  be significantly 
different than c o m m o n l y  envisioned, and that  compac t ion  mechanisms play a large role in D D T .  
The relevance o f  these results to convective burning model ing is then discussed. 

2. B A C K G R O U N D  

2.1. Separate stages o f  D D T  

The literature on the subject o f  D D T  is voluminous  and a complete review will not  be attempted.  
Several published reviews exist (Bernecker & Price 1974a; Bernecker & Price 1974b; Bernecker & 
Price 1974c; Belyaev et al, 1975; Gockha le  & Krier 1982; Bernecker 1986) and the reader is referred 
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to them for a more extensive treatment. Here we present a brief overview of the generally accepted 
stages which lead to DDT. 

The energy transfer mechanism by which the hot combustion products heat the fresh material 
to the ignition point strongly influences the speed of the resulting combustion wave. The progress 
of a reaction wave from deflagration-to-detonation has been postulated to occur in four stages (cf. 
Belyaev et al. 1975). The first is characterized as layer-by-layer, or normal burning. Propellant in 
a solid rocket motor generally burns in this mode and propagation rates are on the order of 1 cm/s. 
The heat transfer from the gas phase (combustion products) to the solid (fresh material) is 
predominantly conductive. The pressures obtained with this mode of burning are not sufficient to 
drive the shock formation required to achieve detonation. The second stage, widely considered to 
be the crucial trigger for DDT, consists of convective burning, with propagation rates on the order 
of 100 m/s. It has been speculated that rapid permeation of hot combustion gases far ahead of the 
flame front is the dominant energy transport mechanism during this stage. Third, a regime termed 
compressive burning begins in which reaction is predominantly initiated by compaction waves. This 
has sometimes been called "low velocity detonation" (LVD). Ultimately, a steady state detonation 
initiated by shock waves is achieved. 

As a preface to this work, we will briefly review three topics: (a) convective burning, (b) 
permeation of gases through porous beds, and (c) multiphase continuum modeling. An extensive 
literature base exists for each of these areas. Here we will only discuss the major elements which 
have direct bearing on this work. 

2.2. Convective burning 

Because convective combustion is seen by many as the most important step in the sequence 
leading to DDT, it merits careful study. Figure 1 illustrates schematically the transition from 
normal burning to convective burning observed in large volume high pressure vessels called 
Crawford bombs (cf. Fifer & Cole 1981). These bombs are used to isolate and study normal and 
convective burning. At lower pressures the regression rate is slow (normal burning) and is 
comparable to that found in full density materials. Above a critical pressure, however, a sharp 
increase in the burning rate with a further increase in pressure is observed. This transition from 
normal burning to convective burning occurs at lower pressures in beds with larger pore sizes. 
Russian workers (cf. Ermolaev et al. 1975) argue that the transition is related to the standoff 
distance (gas phase preheat and reaction zone). They argue that if the standoff distance is larger 
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Figure I. Schematic of the burning rate as a function of pressure for a granular bed burning in a Crawford 
(large volume) bomb. 
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"[Convective burning is] hot combustion products lacing forced ahead of the reaction zone into the unchanged explosive" 
(Griffiths & Groocock 1960). 

"[Convective burning is] the penetration of gases deep inside a burning powdered explosive, caused by the dynamic increase 
in pressure" (Andrecv & Chuiko 1963). 

"[Heat transfer in the convective burning regime is by] forced convection" (Belyaev et  al. 1975). 

"Combustion products...penetrate through the porest into the uareacted explosive, overtake the flame front and preheat 
the walls of the pores up to the ignition point" (Sulimov et  al. 1976). 

t"Pores" refers to intergranular, rather than intragranular, passages. 

than the pore size, the flame cannot spread into the bed. Based on this idea they have successfully 
correlated the critical pressure to standoff distance relative to the pore diameter. 

A complete discussion of even this stage of DDT is difficult because of the wide range of possible 
experimental conditions that directly affect the outcome. Bulk densities can potentially range from 
nearly zero (dusty gases) to theoretical maximum density (TMD). This work is limited to low 
porosity (low gas volume fraction) granular beds (< 0.3) that represent damaged explosives. Next 
we define what is typically meant by the term convective burning, as well as discuss evidence that 
has been used to support this concept. 

Definition. It is difficult to find a precise definition in the literature for "convective burning". 
However, because this mechanism has been widely described as the trigger mechanism of DDT, 
it is imperative that the definition be unambiguous. Representative statements made by researchers 
in this area are summarized in table 1. Most of the primary references are found in the Russian 
literature. These have formed the foundation of much of the DDT research (particularly the 
modeling). Thus, for brevity, only the primary sources are shown here. 

These concepts clearly define convective burning as a deflagration wave whose propagation rate 
is controlled by convective heat transfer via rapid, deep penetration of hot gases, instead of 
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Figure 2. Schematic of convective burning. A thick permeation layer (many particle lengths) ahead of 
the ignition front is shown; however, this work shows that such a thick permeation layer is not plausible. 
A diffusive zone preceding the ignition front is also shown. Such a zone has been neglected in previous 
work since diffusive mechanisms are too slow to yield the fast propagation rates observed. The ignition 

front is followed by a multiphase combustion zone. 
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Table 2. Importance of rapid burning in the transition to detonationt 

"The penetration of combustion into the the pores due to convective heat transfer is the basic cause of the acceleration 
of combustion in porous explosive systems. There is no doubt that ignition of the explosive by a convective gas flow is the 
basic form of excitation of the chemical reaction in the initial stage of predetonation development of the process" (Korotkov 
et al. 1969). 

",..penetration of the gaseous products into the pores and the development of convective regimes are the intial and 
principal reason for the acceleration of combustion" (Obmenin et al. 1969). 

"The model is based on the experimental evidence that convective burning is led by hot gases penetrating through larger 
pores" (Sulimov et al. 1976). 

"The increase in mass burning velocity with decreasing density indicates the presence of convective heat transfer from 
the burning zone to the unreacted substance and limited penetration of the combustion products into the existing pores. 
It has now been convincingly proved that the impairment of stability during deflagration arises due to the filtration of 
gaseous products into the pores" (Belyaev et al. 1975). 

"Convective combustion is the major stage in the combustion-to-detonation transition in porous fuels... Directly ahead 
of the convective front, the difference between gas and particle velocities in the initial stage is relatively great" (Akhatov 
& Vainshtein 1983). 

"~Key words have been italicized for emphasis. 

diffusional processes only. A schematic of this process is shown in figure 2. The permeation layer 
is shown as the leading part of the wave structure. In figure 2 we have shown a thick permeation 
layer (many particle lengths) as generally assumed. This may not be the case, as we will show in 
this work. The permeation could be followed by a diffusive zone preceding the ignition front. 
Generally such a zone has been neglected in previous work since diffusive mechanisms are thought 
to be too slow to yield the fast propagation rates observed. However, Drew (1986) included a 
diffusive zone in his analysis of convective burning. The ignition front is followed by a multiphase 
combustion zone where particles are eventually consumed (Fifer & Cole 1981). The physical picture 
of rapid and deep penetration of gases deep into unburned material is also firmly entrenched in 
more recent literature. For example, Drew (1986) assumed a thick convective preheat zone in 
approximate analytical solutions of the steady convective burning wave. Also, Baer & Nunziato 
(1986) interpreted simulation results with this conceptual picture in mind. 

The postulated mechanism driving this deep and rapid gas penetration is a pressure gradient, 
either static or dynamic (Belyaev et al. 1975). In the static pressure mechanism, the pressure at the 
surface of the hot charge exceeds the pressure in the granular bed (Belyaev et al. 1975), resulting 
in a bulk movement of gas through the intergranular pores. The dynamic pressure mechanism 
involves the formation of individual gas jets. Jets are formed because the pore openings between 
the particles are curved. Gases issuing from these curved surfaces collide and form high velocity 
streams of combustion products, producing local pressure elevations which force the jets into the 
intragranular pores. These pressure gradients are claimed to yield rapid, deep penetration of hot 
gases into the unburned bed. 

When the statements and figures are taken together, a clear picture of the conventional definition 
of convective combustion emerges. It consists of hot gases penetrating far ahead (up to several tube 
diameters) of the combustion front. These gases preheat the particles to ignition. 

Importance. The importance of the convective burning mechanism has been emphasized many 
times. Representative statements are presented in table 2. 

Evidence. Here we review the experimental evidence that has been interpreted by some to 
support the classical concept of convective burning and the conclusion that it is an important step 
in DDT. The classical mechanism of convective combustion appears credible because there are a 
vast number of experimental observations that have been examined based on this physical picture, 
and the model often appears to, at least qualitatively, adequately explain most observed behavior. 
However, nearly all of the evidence cited is indirect, owing to limitations of instrumentation in the 
harsh multiphase combustion environment and the complexity of the problem. This indirect 
evidence is then interpreted within the classical paradigm of convective burning. The experimental 
evidence falls into four primary areas: effects on burning velocity, critical pressure, transition 
distance, and combustion environment, and is summarized in tables 3-6. 

Many of the methods for diagnosing the initiation and progression of this assumed mechanism 
are unreliable. For example the reliability of optical records of the ignition front (often the primary 
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As pressure increases, a critical pressure is reached which causes the combustion rate to increase dramatically (rapid 
burning occurs). It is argued that once this critical pressure is reached, the gases are forced deep into the bed of particles 
and at that point convective heat transfer becomes the dominant mode of heat transfer which controls the rapid burning 
(Andrecv & Chuiko 1963; Bobolev et al. 1966). 

As the charge diameter increases, the propagation rate increases. It is argued that this occurs because as one increases 
the diameter, the relative proportion of large pores compared to small pores increases, thus increasing the ability of the 
gas to permeate deeply into the bed (Belyaev et al. 1975). 

As the relative density increases, the burning rate increases to a maximum, and then decreases (Belyaev et al. 1975). 
Andreev & Chuiko (1963) note that this trend may not be attributable directly to the burning characteristics of "convective" 
burning, but that the dependence is most likely the result of a decrease in dilution by the inert pressurizing gas as the relative 
density increases. 

suppor t  p rov ided  for  this mechanism)  can be ques t ionable .  Opt ica l  records  o f  the f ront  are  
incapab le  o f  giving a comple te  and  object ive p ic ture  o f  the occurrence  and  deve lopmen t  o f  
convect ive  c o m b u s t i o n  (Belyaev e t  a l .  1966; Belyaev e t  a l .  1975). Reasons  for  this include the fact 
tha t  ind iv idua l  gra ins  can  obs t ruc t  the viewing w indow (Pozhar iski i  & Ivanov  1993), b r e a k d o w n  
o f  s table  burn ing  occurs  first a t  the largest  pores ,  no t  un i fo rmly  (Belyaev e t  a l .  1966), and  the spread  
o f  the f lame is chao t ic  (Dubovi t sk i i  e t  a l .  1974). F u r t h e r m o r e ,  it is of ten difficult to d is t inguish 
be tween compress ive  ( including c o m p a c t i o n  effects) and  convect ive effects in exper iments  and  
mode l ing  (Bdzil  & Son 1995). Difficult ies o f  s imilar  magn i tude  are encounte red  with o ther  
exper imenta l  techniques  designed to shed l ight  on the mechan i sm o f  convect ive combus t ion .  F o r  
example ,  results  f rom exper iments  in C r a w f o r d  b o m b s  are  compl i ca t ed  because  the gas (usual ly  
n i t rogen)  used to  pressur ize  the b o m b ,  infi l trates the pores  before  the exper iment  (see table  6). 

In  some cases, the pub l i shed  l i te ra ture  in this a rea  does  no t  adequa te ly  character ize  the 
exper imen ta l  cond i t ions  considered.  F o r  example ,  Dubov i t sk i i  e t  a l .  (1974) s ta te  tha t  the results 
o f  their  exper iments  and  mode l ing  show tha t  the f i l t ra t ion zone (zone o f  pene t ra t ing  gases) is 
15-20 mm,  the hea t ing  zone (diffusive zone)  is 4 m m  and  the chemical  reac t ion  zone is 1-2 m m  
thick. They  also r epo r t ed  tha t  as the combus t i on  t empera tu re  increases,  the width  o f  these zones 
decreases.  However ,  i m p o r t a n t  pa rame te r s  such as the ini t ial  po ros i ty  o f  the system were no t  
r epor ted .  This  is an  i m p o r t a n t  omiss ion  because,  based  upon  p h o t o g r a p h i c  evidence,  it has  
genera l ly  been conc luded  tha t  the size o f  the nonun i fo rmi ty  in the f lame f ront  ( in terpre ted  as the 
p e r m e a t i o n  thickness)  is fa i r ly  large and  can reach several  charge  d iameters  (Belyaev e t  a l .  1975). 

Table 4. Critical pressure effects 

It has been found that as the explosive particle size increases, the critical pressure decreases (Belyaev et al. 1966; Bobolev 
et al. 1966). This effect is attributed to the change in packing and pore size distribution. 

As the porosity is increased the critical pressure decreases (Belyaev et al. 1966). Similar data show that as the permeability 
is increased, the critical pressure decreases (Andreev & Chuiko 1963; Belyaev et al. 1966). These two parameters exert a 
similar, albeit somewhat independent, effect. 

The charge diameter also has an effect on the critical pressure (Belyaev et al. 1966). The critical pressure decreases as 
diameter increases up to approximately I0 mm, but the effect is negligible at larger diameters. This agrees with the effect 
on burning velocity. 

Critical pressure is also affected by the charge length. It was found that if the end of the tube opposite the ignitor is 
sealed, under certain conditions the critical pressure is not reached (Belyaev et al. 1966). They propose that gases permeating 
into the charge pressurize the explosive ahead of the flame front, decreasing the pressure gradient, and stabilizing the 
combustion. Thus, convective combustion is inhibited. 

The combustion temperature of the explosive exerts a large effect on the achievement of convective burning. It has been 
found (Belyaev et al. 1975) that as the combustion temperature is increased through compositional changes, the critical 
pressure decreases. The gas products resulting from explosives having higher combustion temperature are supposedly more 
effective at preheating the explosive ahead of the flame front. 

One author (Taylor 1962a; Taylor 1962b) suggested that a continuous melt layer on the surface of an explosive particle 
would stabilize the flame by preventing intrusion of hot gases into the pores between particles. He calculated melt layer 
thicknesses and correlated these with stability measurements using critical pressure as the figure of merit. He found that 
indeed, the relationship was qualitatively correct. Others (Belyaev et al. 1966; Belyaev et al. 1975) extended the work and 
obtained results consistent with the proposal that the melt layer functions as a gas tight membrane, preventing diffusion 
of gaseous products into the pores. Explosives that do not melt were typically found to have much lower critical pressures 
than explosives that do melt. 
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Table 5. Transition distance effects 

The position at which a deflagration becomes a detonation, relative to the ignition point, is known as the transition 
distance. This distance is a function of porosity and permeability. Both of these effects are used as evidence for the convective 
combustion mechanism. 

It has been reported (Korotkov et al. 1969) that as the porosity increases from a low value, the transition distance 
decreases and then increases. The porosity at which the minimum occurs is a function of the particle size. This effect is 
explained in terms of the rate of pressure increase. The porosity at which the minimum in critical pressure occurs is 
postulated as providing the conditions for the maximization in pressurization rate. At higher porosities, the excess volume 
is too great, while at lower porosities, the specific pore surface area affected by combustion is too small to afford the most 
rapid increase in pressure with time. A similar effect has been noted using permeability as the independent variable (Griffiths 
& Groocock 1960). 

However ,  Sulimov et al. (1976) found that  monosize  pore distributions have substantially thicker 
permeat ion zones than do bimodal  distributions. They reason that  this occurs because larger pores 
facilitate the penetrat ion o f  gases. Pore size distribution is only one o f  a multi tude o f  variables that  
can influence experimental observations.  

2.3. Permeation of  gases through porous beds 

Characterizing the permeat ion o f  gases in porous  beds is an impor tan t  step in determining the 
plausibility o f  mechanisms thought  to occur  in convective burning. Permeabili ty (x) is generally 
used to characterize permeation.  It  is the propor t ional i ty  constant  in Darcy ' s  law and is a measure 
o f  the ease with which a fluid permeates into a porous  solid. Mos t  measurements  o f  permeability 
are performed quasistaticially; that  is, a constant  pressure source is applied to a bed of  known 
porosity.  The flow rate is measured and the permeabili ty is calculated. Often these measurements  
are made  in materials that  differ significantly f rom granular  explosives. Recently Shepherd & 
Begeal (1988) made  dynamic  and quasistatic measurements  on explosives, inert simulants, and glass 
beads using ambient  temperature nitrogen as the driving fluid. Pressures f rom 0.69 to 138 M P a  were 
used. Isothermal  condit ions were assumed in their analysis. The authors  concluded that, for 
quasistatic conditions,  empirical correlations calibrated to beds o f  spherical particles predicted the 
measured permeabilities beds o f  glass beads adequately.  At  porosities o f  approximately  20%, the 
range o f  measured permeabilities were 10-~2 ~< x ~< 10-1°cm 2. However,  for the explosive CP 
composed  of  nonspherical  particles, empirical correlations for spherical particles over-predicted 
permeabilities by factors o f  5-50. They also compared  numerical solutions to transient 
experimental results using models based on the work  o f  Morr i son  (1972; 1976; 1977) and Nilson 
(1981). The pulse shape and transit times th rough  beds o f  glass beads compared  favorably with 
predictions. The permeabilities obtained f rom the transient experiments were similar to those 
obtained f rom quasistatic testing. However ,  higher Reynolds numbers  can be obtained using 
transient methods.  In the permeat ion experiments o f  explosives and inerts described above, a drag 
coefficient 6 o f  about  2.0 × 10 s kg/m 3 s for granular  explosive materials with porosities, ~bG, near 
0.3 was obtained. The drag coefficient is inversely related to the permeabili ty (see [1]) and is 
formally defined later with the governing equat ions (see [3]). The pressures considered by Shepherd 
and Begeal are below those which can occur in convective burning. The permeat ion rate is a result 
o f  the interplay between the driving potential  (pressure gradient) and resistive force (drag). 
Consequent ly  an objective in our  work  was to quantify the resistance to flow under  conditions o f  
higher driving pressures in low porosi ty granular  beds. 

2.4. Modeling of  convective burning 

Several models have been proposed  to describe convective burning in granular  energetic 
materials. The goal o f  early work  was to model  flame propagat ion  in packed beds o f  granular  

Table 6. Effect of combustion environment 

The Crawford bomb is a constant-pressure device. The manometric bomb has a much smaller volume than does the 
Crawford bomb, and thus the pressure increases as combustion proceeds. The critical pressures that are determined from 
each of these devices are much different. The critical pressures determined for a given explosive using the manometric bomb 
are 10-15 times lower than those found using the Crawford bomb to "the filling of the pores with cold inert gas in the 
pressurizing process, which leads to a substantial reduction in the pressure drop causing diffusion of the combustion 
products into the pores and to the intense cooling of these products". 
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propellants under confinement, with an emphasis on gun cartridge applications (Kuo et al. 1973; 
Kuo & Summerfield 1974; Krier et al. 1976; Kuo et al. 1976). Later models were proposed that 
extended this earlier work to describe the transition from convective burning to detonation. A 
review of such models is found in Gockhale & Krier (1982). More recently, Drew (1986) used 
asymptotic methods to obtain predictions of the propagation rate of a convective combustion wave. 
Drew assumed a low Mach number flow, a thick permeation zone, and efficient heat transfer 
between the particles and the gas. Drag relations based on empirical expressions fit to permeation 
experiments in beds of spherical particles were used in these models. Stewart et al. (1994) provide 
a good review of the origins of the two phase modeling approach and address the problem using 
a simplified scheme. 

The DDT model of Baer & Nunziato (1986) used the drag correlations obtained by Shepherd 
& Begeal (1988) for low-porosity granular beds. A "permeation" zone 15 mm thick was identified 
by Baer and Nunziato on pressure profiles 20 #s into a calculation (see figure 13 in Baer & Nunziato 
(1986)). In order for gases to penetrate into the unreacted bed this distance in this amount of time, 
the velocity difference between the gas and solid must be on average 750 m/s. However, 
examination of published results from similar simulations shows that the gas and particle velocities 
are nearly equal (less than 10 m/s differences) everywhere (see figure 6 in Baer & Nunziato (1986)). 
Clearly, this structure cannot be attributable to permeation. Similar structures have been obtained 
by considering only compaction effects (no drag interaction) in numerical simulations (Bdzil & Son 
1995). The structure calculated by Baer and Nunziato most likely arises from compaction and 
reaction processes, and not deep, rapid penetration of gases into the bed. Others (Ermolaev et al. 
1975) also claim to predict thick "permeation" zones (again with a porosity of 30%, the reported 
filtration zone is 10 cm, the heating zone is 1.4 ram, and the combustion zone is 5 ram). Interpreting 
results in these complex multi-process problems must be done with great care. 

2.5. Drag coefficient 

The key parameter in modeling permeation is the drag coefficient (or, inversely, the 
permeability). The Forchheimer equation (Forchheimer 1901) is often used to model the drag 
coefficient, 

K K 

where x , / ~ ,  and 2 are the permeability, gas viscosity, and Forchheimer constant. The gas phase 
density and velocity are denoted by pc and uo, respectively. The drag law, [1], can be further 
simplified by assuming that either the viscous (first term) or the inertial (second term) term 
dominates. When the viscous terms dominate, the Forchheimer relationship reduces to Darcy's law. 
Typically, x and 2 are correlated to such parameters as effective particle diameter and porosity. 
MacDonald et al. (1979) give various expressions for these relationships. The following section 
describes the permeation experiments that were designed to characterize the permeation rate in low 
porosity granular beds driven by high pressure gradients. 

3. EXPERIMENTAL DETERMINATION OF PERMEABILITY AT HIGH PRESSURE 

To characterize permeation under conditions similar to those experienced in convective burning 
(in particular, high driving pressures and low porosities) an apparatus was designed that used 
burning explosive to rapidly pressurize a reservoir adjoining an inert low-porosity packed bed. 
Pressures up to 621 MPa with pressurization times in the reservoir of less than 1 ms were attained. 
A schematic of the apparatus used to measure permeability is shown in figure 3. The burn chamber 
was a steel tube into which a Pyrofuse hot wire ignitor was placed. A mixture of titanium and boron 
(Ti-B) was placed inside a Teflon ring and in contact with the Pyrofuse. Class A HMX 
high-explosive powder was then poured on top of the Ti-B and lightly tamped. The total volume 
of the burn chamber was 1200 mm 3. The amount of HMX was varied to obtain different maximum 
pressures. Silicon carbide (SIC) was used as the porous bed. SiC was chosen because of its high 
melting temperature and strength. The SiC was packed into a steel tube of slightly smaller diameter 
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Figure 3. Schematic of permeation experiments. A Pyrofuse hot wire ignitor was used to ignite low density 
HMX in the burn chamber. The amount of HMX was varied to obtain different maximum pressures. 
Silicon carbide (SIC) was used as the porous bed. SiC was chosen because of its high melting temperature 

and strength. 

using a ram press and a pressure of  approximately 27 MPa. Final SiC densities were approximately 
74% of  the theoretical maximum density (TMD, 3.217 g/cm3). Porosities in damaged explosives 
are expected to be generally lower. Thus, this is considered a worst case. The particle size 
distribution is shown in figure 4. The SiC particles used were nonspherical (see figure 5), which 
is typical of  granular explosives. The entire assembly was then clamped between two steel plates 
using four threaded rods. A stainless steel frit (Cajon, model EL) was placed at the chamber exit. 

Four  piezoelectric transducers (PCB, Model 109-A02) were used to measure dynamic pressures. 
One gauge was placed in the burn chamber and three others were distributed along the wall of  
the powder chamber as shown in figure 3. The locations of  the gauges relative to the interface 
(positive into the bed) were -11 .8 ,  8.56, 13.56 and 18.56 m m  for gauges 1-4, respectively. 

After each test, the SiC bed was visually examined. Total compression of the bed was less than 
a millimeter, and the particles at the burn chamber/particle bed interface were usually fused slightly 
to a depth of 1-2 mm, indicating some surface softening had occurred. This observation indicates 
that rapid heating occurred for a short time near the interface, and is consistent with simulations 
presented later. The SiC bed beyond the interface region appeared unchanged except for minor 
darkening of the original color, which diminished with distance from the interface. 

The testing procedure consisted of first applying a voltage (12 V) to the Pyrofuse. Several 
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milliseconds passed before the hot Ti-B particles ignited the H MX  grains. Once the pressure 
in the burn chamber began to rise, the digitizers were triggered to record the pressure 
transducer output. A respresentative record of  one experiment is shown in figure 6. Three 
peak reservoir pressure levels were considered: 162, 310, and 621 MPa. The modeling and 
analysis is described in the following section. The experimental results are presented in a later 
section. 

Figure 5. Photograph of representative SiC particles used. 
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4. MODELING 

A simplified version of the BN model (Baer & Nunziato 1986; Bdzil & Son 1995) was adopted. 
The solid is assumed to be incompressible and stationary (no compaction). Within these 
assumptions, the equations for mass conservation are 

(~°P°) + ~x (~opouo) = 0, [2a] Gas mass d~ 

and 

(4,sps) = 0. [2b] Solid mass d-'}t 

Here ~b is the volume fraction, p is the density, and u is the velocity. The subscripts, S and G, refer 
to the solid and gas phases, respectively. Conservation of momentum is described by, 

(4)opouo) + ~ ~ s  Gas momentum ~-~ -~x (q~opou~ + ckopo) = - p o  ~ - 6uo, [3a] 

for the gas phase and, 

Solid momentum c~x (~bsps) = pc + 6uG, [3b] 

for the solid phase. The pressure is denoted by p, and 6 is the drag coefficient. The equations for 
conservation of energy are, 

Gas energy ~ (@@c(ec + ug/2)) + [ua(d~@c(ec + ug/2) + q~cpc)] = I-I(Ts - Ta), [4al 

and 

c? (4~spses)-- - I t ( T s  - To), [4b] Solid energy O~ 

where e, H, and T represent the specific internal energy, the heat transfer coefficient, and the 
temperature. The saturation condition is Oc + Os = 1. Heat conduction within each phase has been 
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neglected. Given the assumptions of  an incompressible solid, and that the bed is not allowed to 
move (i.e. a force is applied to the far end of  the bed), [2b] and [3b] do not need to be considered. 

We model the burn chamber by assuming that the pressurization due to the burning HMX is 
instantaneous. The combustion gas is considered to obey an ideal gas law (a good approximation 
for these experiments) 

pc  = (7 -- 1)C~cp~Tc, [5] 

where y is the adiabatic constant (ratio of  specific heats) and Cvc is the specific heat at constant 
volume for the gas. For  this problem y = 1.23 and C~ = 1.9 × 103 J/kg K. A representative initial 
state of  the burned HMX is po0 = 168kg/m 3, Pc0 = 2.94 × 10SPa, and Tc~--4000K.  The 
dimensions of  the burn chamber are such that it is large compared to the acoustic scale of  interest 
and small compared to the long-time permeation scale. That is, we consider the burn chamber to 
be infinite on the acoustic scale and essentially a uniform state on the permeation scale. Therefore, 
we associate no spatial scales with the burn chamber. 

4.1. Scalings and  reduced equations 

The equations for modeling the gas flow through the SiC bed contain three separate spatial 
scales: (1) a drag scale related to 6, (2) a heat transfer scale related to H, and (3) the thickness 
associated with (c'~bs/t3x) -1 at the interface region between the gas reservoir and the SiC bed. The 
heat transfer coefficient is a function of  the gas flow and is estimated to be in the range 
3.7 × 107W/m3K ~< H~< 4.4 × 101°W/m3K. Similarly for the drag coefficient the range is 
estimated to be 2.0 × l0 s kg/m 3 s ~< 6 ~< 2.2 x l0 n kg/m 3 s. To get these estimates we have assumed 
gas speeds ranging from zero to 1500 m/s and ~s = 0.74. The density and "energy" scalings are 
taken to be p~q~c,0 = 45 kg/m 3 and Y(Y - 1)C~ = 540 J/kg K, respectively. Using these parameters 
the permeation and heat transfer time scales (the subscripts p and h correpond to permeation and 
heat transfer, respectively) are 

4,c,0p~0 2 x 10 -1° s ~< tp ----- ~ ~ 2 X 10 -7 S, [6] 

and 

5.5 × 10 -7 S ~< th --= (q~c0pc,0)7(Y -- 1)C~ H ~<7 x 10 -4s, [7] 

Therefore, we expect as the gas permeates through the bed it decelerates orders of  magnitude faster 
than the time required for heat transfer from the hot combustion gases to the bulk of  the SiC. 
Initially we will neglect heat transfer to the bed since it is a much slower process than the drag. 
We choose to use the drag scaling as our principal scale. Because the shortest distances in the bed 
are related to the acoustic processes, we use the initial sound speed of  the representative burn 
chamber gases, co0 = 1.5 x 10 3 m/s, to form a spatial scale 

Cc, oCkcopc, o 3 × 10 -4 m ,  [8] Xp - -  ~ - -  

where we have assumed that ~5 = 2.0 x l0 s kg/m 3 (this value corresponds to the estimated value 
for the low-speed value of  6 for this bed). 

The last scale we consider represents some measure of  the thickness of  the interface region 
between the burn chamber and the bed as measured by dpso(bdps(X)/bx) -1. Although we have no 
direct measure of  this, it is probably related to the SiC particle size 

- ,  

= 6 × 10 -~ m ,  [9] 

where the subscript n refers to the interface region. 
On neglecting heat transfer, the entire dynamics of  the permeation problem is describable with 

only the gas phase equations. Using the ideal gas law for the specific internal energy (see [5]) and 
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tp and xp as the time and space scales, [2a], [3a] and [4a] can be rewritten in Lagrangian (particle 
based) form as 

D R  OU R U ( l ~ d d p o  [10] 
D---T + R ~ - =  - e---~ \¢pc/ d ~ '  

Rb-Y  [11] 

and 

where 

and 

1 D P  P D R _ ( y - 1 ) U  2 
7 Dz R Dr ~b~ ' 

[121 

-- t/tp, 
D 8 3 

= x/xp,  - -  = - -  + U [13] 
Dz ~z ~-~' 

-- x / x . ,  e. =- x~/xp<< 1, [14] 

P = pG/p~o, R = pG/p~o, U = u~/cco, [15] 

with c ~  = VP~o/poo. The source terms in [10]-[12] represent two physical processes with differing 
spatial scales; the O(1) drag scale and the O(en)= O(10 -1) nozzling scale. The drag process 
contributes to the production of entropy in [12] while the interface region nozzling term, 
(1/~b~)(d~bc/dO, does not. 

Because the scale of these processes is different, we consider sequential limits with each process 
treated separately. Although the nozzling term at the interface region is not the principal concern 
of this paper, we treat it here because it controls the flow of gas into the SiC bed. In the next 
subsection we consider the action of the nozzling on the "interface" condition. 

4.2. Interface region 

The gas permeation problem we consider is fundamentally a two-phase, two-velocity flow. In 
such flows, the phase pressure and particle velocity can be discontinuous at "interfaces." The 
connection conditions for the states on either side of the interface region are controlled by a 
structure problem driven by the nozzling term. Here we consider this structure problem for an 
interface region that, due to the incompressible nature of the SiC bed, remains stationary. 

The interface region represents the shortest scale considered in this problem. Because the 
dynamics on either side of the interface occur on slower time scales, we can consider the flow in 
the non-dissipative, interface region to be quasi-steady; that is, no explicit time dependence is 
considered. Scaling the distance coordinate with respect to the nozzling scale, ~ = en~ and assuming 
that all the dependent variables are O(1), yields the interface region equations (analogous to the 
standard nozzle equations) 

d ( R U ) =  - R U ( I ~  dc~G 
d~ \q)G] d~ ' 

[16] 

and 

1 d P  
R U ~ - - ( +  ~-d~- = 0, [171 

1 d P  P dR 
= O. [181 

~, d~ R d~ 
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Equation [18] gives the isentropic relation P/R ~ = 1 and integrating [16] across the interface region, 
yields, 

Ur (Pb'~ I/r 
- ¢Cb \fi~] , [19] 

where the subscripts r and b denote the burn chamber (reservoir) and bed, respectively. Rewriting 
[16]-[18] and using c2= Ptr-l)n, yields the nozzling equation (cf. Thompson (1972), p. 281) 

dM _ 1)M 2 + 1 
de W - 1  Jk, ] [20] 

where M 2 = U2/c 2 is the square of the Mach number. The important observation here, is that if 
M~ < 1 and ¢c decreases monotonically in going from the reservoir to the bed, with (dec/dO 
limiting to zero in the bed, then M~b ~< 1. This is analogous to a converging nozzle in single phase 
flow. From [19] and [20] it follows that for the conditions of our problem, the flow accelerates going 
through the interface region limited only by M~ = 1, which corresponds to choked flow. The 
nozzling action of the interface in conjunction with the high pressure reservoir gas serves to 
generate a high-speed flow near the interface in this problem. 

Integrating [20] gives us the "interface" jump condition 

2 ~-(~bY-'--1-) } [21] 
M~b -- (y _ l~ [~-'(¢~b~b 2 -  1) ' 

subject to the condition that Mb 2 ~< 1 and where ~b -- (Pb/Pr) In. Equations [19] and [21] connect the 
flows at either side of the interface region. Importantly, when the pressure jump across the interface 
region goes to zero, the flow of gas into the bed stops. In the next subsection, we consider the flow 
that develops in this problem in response to a jump in pressure and porosity at the interface region 
in the limit of zero drag. 

4.3. Zero drag 
In the limit of zero drag, the flow is acoustically controlled. For such flows it is most convenient 

to write [10]-[12] in characteristic form. Since the nozzling terms play no role away from the 
interface region, on the z and ~ (permeation) scales the characteristic equations are 

(~z + (U _ c) a "~// 2c _ c ) ¢ _ ( ~ , + l ) / ( y _ l  ) -~]\-~-Z--~+_U)=U((7 1)U~ exp(yA_-~S1) 

+ ~(~ - 1) + (U + c) AS, [22a, b] 

where AS is the drag related increase in entropy of each gas parcel as it moves through the bed, 
and is formally given by 

AS = f ~(7 - 1) U2 Dz, 
3, P 

[23] 

where S~,Dz denotes integration along a particle path. Equations [22a, b] describe the progress of 
right (U + c) and left ( U -  c) going waves in the gas in both the burn chamber and the bed. In 
the limit of zero or weak drag, AS can be neglected. 

In the absence of drag, the right-hand sides of [22a, b] vanish, leaving the standard equations 
of one-dimensional gas dynamics. The problem that remains is the shock-tube problem (Riemann 
problem) modified to include an area change (nozzling) between the high-pressure driver gas (burn 
chamber) and the low-pressure bed (of. Thompson (1972), p. 423 and Schreier (1982), p. 238). In 
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the limit that the initial pressure in the burn chamber, Pro, is much greater than the initial pressure 
of the gas in the bed, Pb0, (i.e. P~0>>Pb0) we can neglect Pb0 and the flow is then globally isentropic. 
The variables 

2c 
+ U, [24a, b] 

~ - 1  

are then constant along the characteristic paths 

d_~ = U + c. [25a, b] 
dz 

The solution then consists of two simple, centered waves (one in the bed, the other in the reservoir) 
separated by a constant state (in the reservoir) and a P, U-jump through the interface region. With 
the bed on the right and the reservoir on the left, the solution of this problem is 

/ /7+ 1\ o, ¢ > 

B ed  U = , [26] 
{~+ 1\ 2 ¢ c~ + +----f~ 
\ v - l /  

6'+ 

c~ y - l ~  [~,+1~ 
[27] 

Reservoir  U = 

~_-~2 1 (1 - cd, 

O, 

2 7 + 1  ) 
- 1  7 lCr z ~ < ~ < O  

~ mT 

[28l 

C = 

Cr, 
(~ 2 ~+_1 ) 

- 1  y lCr z < ~ ¢ < 0  

2 (~, - 1"~ ~, ( 2 //7 + 1~ 
7 + 1 \ - ~ - ( / - ~  - - z  <~ ~ <~ ~ - \ - ~ - - - f ) e r ) z ,  [29] 

1, ~ <~ --'C 

where for this case Mb = 1 at the "interface" and the constants cr and Cb are obtained by solving 
[19] and [21] using the fact that q, = (cb/cr) 2/~- ~, Ub = Cb and Ur = 2(1 -- G)/(y - 1). The numerical 
solution assuming no drag or heat transfer (two-phase shock tube) is shown in figure 7 for the 
following parameters: ~bo = 0.26, P~ = 296 MPa, Pb0 = 0.1 MPa, T~0 = 4000 K, and Tb0 = 300 K. 
The agreement between analytical values on either side of the interface and numerical simulation 
is good (see figure 7). The numerical calculations utilize MacCormack's method with time splitting 
to treat the source terms. Importantly, the gas enters the bed at high speed, 1370 m/s for this 
example, and at a substantial density. Since the zero drag limit describes the early time flow into 
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the bed, we find that at least initially the penetration rate of  the gas into the bed can be high, 
potentially leading to deep penetration of  the bed. 

The analysis of  the Riemann problem described above shows that as the initial pressure in 
the bed is increased to a significant fraction of  the initial reservoir pressure, eventually Mb < 1 
which leads to a slower gas flow. Finally, when Pr----Pb, the gas flow stops. Up to this point 
we have ignored the effect of  the drag. We show in the next subsection that for typical values 
of  the drag, that (1) the high speed of  the first gas to enter the bed is quickly slowed which 
raises the pressure and that in turn (2) acts to limit the speed of  the gas that enters the bed as time 
goes on. 

4.4. Drag &teraction 

If the high flow velocities of  the gas that enters the bed initially continued for times on the order 
of  10 ps, the penetration of  the gas into the bed would be deep (on the order of  1 cm). Differential 
flow speeds between the solid and gas would then generally represent an important mechanism for 
transporting mass, momentum and energy in the system. Here we consider two problems that show 
that the flow speed of  the gas decays quickly, leading to low flow speeds at distances ~ = O(1) into 
the bed. Again we neglect heat transfer. Including heat transfer yields more rapid deceleration of  
the gas flow. 

To gain an understanding of  how the drag acts to slow the gas flow, we consider two problems. 
First we obtain an analytical solution to the problem of  an initial small pressure jump 
in the reservoir relative to the bed. This basically isentropic flow helps us define the 
structure of  the problem and the relative scalings of  the variables. Next we do a full 
numerical simulation of  the large pressure jump problem, showing both the early and the late time 
behavior. 

A schematic of  the small pressure jump problem is shown in figure 8. Assuming that all the 
dependent variables can be expanded about the initial reservoir state 

P = 1 + EP~ + • • •, R = 1 + ER~ + • • •, c = 1 + Ec~ + • • •, U : EUI "Jff " " " , [30a, b, c, d] 
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where the magnitude of the initial pressure jump AP E cPlo (PI,, is the initial value of PO sets the 
scale 6, then at O(E) [22a, b] reduce to 

($$)(-+ a)= T VI, Pla, bl 

where the drag source term in [31a, b] is only present for r > 0 (in the bed only). 
To help understand the action of the “interface” boundary condition, we first consider the zero 

drag problem, leading to the result that we have two noninteracting waves 

and 

where f and g are as yet arbitrary functions and where, for this isentropic flow, 

P,=--&c,. 

For this linear, non-interacting wave problem, we have a forward-going wave in the bed and a 
backward-going wave in the reservoir 

-+ U,=f((-z), _A!__ 2Cl 
Y-l Y-l 

u, = 0, 

VI = &f<r - t), PI = SfCS - 71, 1361 
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Reservoir 2el Ul = g(~ + T), 2cz 7 ~  -- ~ -----L~ + U, = O, [37] 

U l =  - -½g(¢+z) ,  P , = ~ g ( ~ + z ) .  [38] 

Applying the first interface condition, given by [19], yields the condition 

g(z) = -- ~bcbf(-- z). [39] 

Applying the second interface condition, given by [21], then yields the final determining condition 
for this problem 

E 2 2 { ~f(-r)(1 + } (f(-z))~ = ~ (1 ~4 ,L )  P,o - 4,o~) , [40] 

where for this flow M~b<< 1. From [40] it is clear that through O(E) the pressure is continuous and 
the velocity experiences a jump through the interface region 

1 Pl0 
Bed U = E [41 a] 

(1 + q~Cb)' 

P =  I - E  q~bPl0 
(1 + ~bcb)' [41b] 

1 t~GbPl0 
Reservoir U = E [41c] 

(1 + 4~ob)' 

P =  1--E qScbP~0 (1 + thcb)" [41d] 

In fact it follows from [21] that O(E 2) pressure jumps are associated with O(e) changes in velocity 
across the interface region. Thus jumps in porosity tend to produce velocity jumps even for small 
pressure differentials across the interface region. This is consistent with jumps observed in 
numerical simulations. 

Going on to consider the influence of  drag, we now must deal with the coupling between the 
wave families. Focusing our attention on the bed (since the just completed analysis continues to 
describe the reservoir) and now define f - 2 c ~ / 0 , -  1 ) +  U~, we get 

~ - - 0 .  [42] 

Equation [42] is called the telegrapher's or damped wave equation. It has the structure of  equations 
that describe a wave hierarchy (see Whitham (1974)). Importantly, for short times the second order 
operator controls the evolution of  the flow, while for late times the control switches to a first order 
operator. Since our goal is to understand the structure of  the flow, we use a simplified asymptotic 
analysis to expose the properties of  [42]. 

We consider two limits: (1) a short-time, high-frequency, wave head limit, where 

¢ - ~ o = e X ,  r - Z o = E t ,  [43] 

and (2) a long-time, low-frequency, far-field limit, where 

x t ¢ - ~ ,  T---.E [44] 

The limit described by [43] is used to focus in on the evolution of  the head of  the acoustic wave, 
while the scaling of  [44] is used to examine the flow at several drag scale distances, xp, into the 
bed. 
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In the wave head limit, we find that we have essentially decoupled waves whose amplitude at 
the wave head decays rapidly with time 

)'~,~(x -- t) exp(-- et/2) + . . .  [45] 
f =  [ fg(x + t) exp(--et/2) + 

Thus the amplitude of the rapidly propagating acoustic-like mode decays exponentially with time 
on the drag time scale. This says that within a distance xp of the interface region, the amplitude 
of the fast wave is inconsequential. 

In the far-field limit, we find that [42] behaves asymptotically like a diffusion equation 

f -- efxx + O(e 2) = 0. [46] 

Equation [46] supports a slow, diffusively controlled flow (with A constant) 

1 ex // x2 ~ 
f = A - - ~ t  p ~ - - ~ ) ,  [47] 

where at the wave head (with B an O(1) constant) 

x ~ 2x/~B, [48] 

and 

d~j dx x /~B"  [49] 
d z -  dt ~ 

Thus at times long compared to tp, the wave head moves slowly (not at acoustic speeds) and the 
amplitude decays like 1/x/~. An analysis through O(e 2) is required to capture a more detailed 
picture of the small amplitude, slow flow that develops. This is beyond the scope of the present 
work. 

A short-time snapshot of a full numerical simulation of the flow with drag is shown in figure 9. 
The x- t  plot of the pressure field (top of figure) shows the decay of the wave speed entering the 
bed. This is evident by the change in slope of the contours in the bed with time. Again, heat transfer 
has been neglected in this simulation and except for the drag interaction, the simulation is the same 
as shown in figure 7. The slowness of the drag-controlled flow is evident by the factor of l0 
reduction in the spatial scales required to represent this case relative to the zero drag flow (compare 
with figure 7). The flow speed is down to near 200 m/s after 4 #s of flow in a ~bGb = 0.26 porosity 
bed. Assuming a Reynold's number dependent drag coefficient yields even faster deceleration. If 
heat transfer is included, the deceleration is slightly faster. A full simulation with both a Reynold's 
number dependent drag coefficient and heat transfer is considered later. 

Another interesting feature of this simulation is that extremely high gas temperatures 
(> 10,000 K) are observed at the head of the wave front. These high temperatures are a result of 
drag dissipation. If heat transfer is allowed, more realistic temperatures result (~  6500 K). Clearly 
dissipation as a result of flow drag is significant. This fact is also seen in the rational derivation 
of the low-speed equation under adiabatic conditions (see the appendix). 

Measured on the permeation scale, xp = 3 x 10 -4 m, the velocity is down by a factor of 10 from 
its initial value after the permeation wave has traveled a distance of 10 xp. Since the pressure gauges 
used to experimentally measure the "quasi-steady" permeation rate are many times this distance 
into the bed, we anticipate that the flow at the gauges in the bed will be slow. In the next subsection, 
we derive the slow flow approximation to [10]-[12]. 

4.5. Low-speed approximation 
The essence of the slow flow approximation is that the inertial terms in [11] can be neglected. 

This is justified if the acoustic speed is much greater than the convective speed, l ucl<<lc°l. This 
approximation is commonly made in the analysis of transient gas flow in porous media. Isothermal 
and isentropic limits have been considered in previous work (cf. Morrison 1972; Morrison 1976; 
Morrison 1977; Nilson 1981). Negligible heat transfer between the solid and gas (adiabatic), or very 
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large heat transfer (isothermal) bracket the actual conditions. The isentropic limit would be 
appropriate if there is negligible heat transfer and drag interaction heating. In other words, if there 
is negligible heat transfer and drag interaction there are no irreversible terms and consequently no 
change in entropy can occur within the slow speed approximation. For example, using the 
isentropic relationship between pressure and density in the mass equation and eliminating uo by 
utilizing the low-speed limit of the momentum equation, ~3PGI~x = -&UGIqbG, yields 

//@ok ,/, ~pok '--,, tt- 7.o o. L,o] 

Similar equations can be obtained for the isothermal case (simply let ?--, 1 in [50]). The resulting 
equation is a nonlinear diffusion equation. Because of the nonlinearity, this equation has some 
interesting properties. In particular, the permeation exhibits a discontinuity in the gradient of 
pressure at the head of the permeation front. Linear diffusion does not produce such 
discontinuities. 
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Previous workers have assumed that in the low speed approximation the drag dissipation term 
is negligible (cf. Morrison 1972; Morrison 1976; Morrison 1977; Nilson 1981). As a consequence 
of this assumption, the isentropic limit results if, in addition, adiabatic conditions are assumed. 
However, a rational derivation shows that the drag dissipation term cannot be neglected based on 
the low-speed assumption. We present a rational derivation of the slow-flow equations under 
adiabatic conditions in the appendix. 

The previously derived "jump conditions" across the interface region, [19] and [21] could be used 
to define the interface boundary condition for a slow-flow equation such as [50] for times larger 
than tp SO the slow-flow assumptions near the interface will not be violated. These boundary 
conditions relate Pb, Ub to Pr, when Ub = -1/y(~Pb/~) at the interface. An alternative is to use 
the first experimental gauge in the bed as the left boundary. This avoids the complexities at the 
interface altogether. 

4.6. Estimate of drag coefficient directly from data 
It is useful to derive a simple relationship between the measured pressure traces (measured at 

a fixed point), the drag coefficient (6), and permeation rate (uG). We begin by rewriting the mass 
equation, [2a], for the gas phase in the bed, 

Opt _~ dug 
(3--7- + uo + pG ~ = 0. [51] 

Just behind the head of the permeation wave pc = 0 and pc = 0 (see figure 9 for example) so that 
we drop the last term in [51]. Further, if there is a simple relationship between density and pressure 
such as pc = f(Pc) it follows that replacing density by pressure in this reduced mass equation gives, 

(3p~ = _ uc ~ [52] 
Ot ox 

pG<Ap G pG < ~tp G 

where the restriction p~ < Ape has been explicitly noted to indicate that the relationship is applied 
at the wave head where the pressure is just above the initial very low gas pressure in the bed. At 
the wave head the gas momentum equation simplifies to dpG/dx = -6uc/~G (negligible inertial 
terms in low gas density regions). Using this simplified momentum equation in [52] yields 

c~ = ~b--gqu~ c3pGc3t pG<apo' [531 

This expression provides a simple relationship between the drag coefficient, measured pressure 
traces (measured at a fixed point), and permeation rate (estimated from arrival times of the 
permeation wave). This relationship is useful in obtaining direct estimates of 6 from the 
experimental data. Note that no additional assumptions are made concerning the heat transfer or 
speed of the flow in the derivation of this expression. The utility of this expression is demonstrated 
in the results section. 

5. ANALYSIS OF EXPERIMENTS 

In this section the data are presented and models described in the previous sections are compared 
with experiments. The most direct result from the data is the macroscopic permeation rate as a 
function of the maximum reservoir pressure. The macroscopic permeation rate was obtained from 
the initial rise reported by the three pressure gauges in the bed. Figure 10 shows the measured 
permeation rate as a function of reservoir pressure for the three experiments (the trivial result of 
equal reservoir and bed pressure with no flow is also plotted). The maximum permeation rate 
obtained in these tests is only 6.5 m/s for the 621 MPa case. This is at least an order of magnitude 
below the propagation rate sometimes attributed to convective burning in energetic materials. 

It is not likely that driving pressures in convective burning of energetic materials could be 
significantly higher than the maximum pressure considered here (621 MPa). These data also 
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indicate that the permeation rate has a decreasing sensitivity to driving (reservoir) pressure as the 
pressure increases (see figure 10). This trend is consistent with drag coefficients (see [1]) that 
generally exhibit an increase in the drag coefficient with permeation rate. Therefore, even if driving 
pressures were increased significantly above the pressures considered here, it appears nearly 
impossible to attain macroscopic permeation rates an order of magnitude higher than those 
reported for this porous system. 

These results indicate that the commonly accepted mechanism of deep, rapidly penetrating hot 
gases preheating material to ignition is not physically plausible for the conditions considered. 
However, a form of convective burning is experimentally observed under some conditions. A 
modified physical picture is discussed later. 

5.1, Numerical simulation 

A full simulation of one of the experiments, including heat transfer and acoustic time scales, was 
made. The equations were integrated numerically as previously described. An initial step in pressure 
was assumed; that is, the reservoir is assumed to be pressurized instantaneously. In the experiments 
the pressurization in the reservoir is rapid, so this is a reasonable approximation (see figure 6). The 
maximum reservoir pressure was 310MPa, which corresponds to the intermediate pressure 
considered. The drag and heat transfer were modeled using a correlation by Gel'Perin & Ainstein 
(1971), 

H = 3~skc (1 - 0.2Re2/3prl/3). [54] 
t ~  

The Prandtl number, Pr, was assumed to be 0.75, and a is the particle radius. The following drag 
law was assumed as a function of the Reynolds number, Re (=  2cbspsauc/l~c): 

= _ _ (  ¢IRe~ 
6 /~ 1 + [55] 

The conductivity, kc, and the viscosity,/~G, of the gas were assumed to be 7.0 x 10 -2 W/m K and 
5.0 x 10 -5 kg/m s, respectively. The permeability, x, is given by 

4a:~b~ 5 
x - - -  [561 

¢2 
L I M F  ~ / ~ . - - F  
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Here qt and q2 are empirical constants.  The values used by Baer & Nunzia to  (1986) were adopted 
(~ = 0.01 and q2 = 33). These values are shown later, based on these experiments, to produce 
reasonable values for the drag coefficient. 

Figure 11 shows the results o f  this calculation. The Reynolds number  drag coefficient quickly 
slows the flow near the interface (compare with part  (a) o f  figure 11 with top o f  figure 9). A constant  
drag coefficient will overpredict  the permeation rate. We also observe that the gas is rapidly cooled 
to near ambient  temperature in a very short  distance (see part  (b) o f  figure 11). For  this simulation 
after 1 ms, the gas has penetrated about  1 cm, while the temperature has dropped to 400 K 3 m m  
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from the interface region. Therefore, an isothermal flow in the bed can be reasonably assumed for 
these experiments. Furthermore, the simulation shows (see part (b) of  figure 11) that the permeation 
rate in the bed is about 5.5 m/s after 1 ms which is reasonably close to the measured permeation 
rate of  4.2 m/s for this same case at a later time. The predicted arrival time to the first gauge in 
the bed also compares reasonably well with experiment (in the simulation the arrival time is 0.9 ms 
at the first gauge in the bed compared to about 1 ms in the experiment). At early times the speed 
of  the gas is large in the interface region. As a consequence, the heat transfer is very rapid at early 
times also. Because this permeation rate is much less than the gas sound speed, the low-speed 
approximation applied to the flow in the bed away from the interface can be expected to be a 
reasonable approximation as well. In these simulations the permeation rate is only large very near 
the interface region between the bed and the reservoir at very early times. 

5.2. Comparison of  data with isothermal low-speed flow calculations 

Assuming low speed flow and isothermal conditions, [50] (with ~,~1) can be numerically 
integrated. Other heat transfer conditions, such as adiabatic conditions, could be specified. 
However, it turns out that determination of  the drag coefficient is insensitive to the heat transfer 
assumed. A standard IMSL? library PDE solver (DPDES) was used to integrate the equations. 
A constant drag coefficient for each case was assumed, and optimal fits to the data were made to 
obtain an effective drag coefficient for each case. The results of these calculations are shown in 
figure 12 for the three experimental cases. Figure 12 is an x- t  plot of  the locations of  the first rise 
in pressure. The first gauge in the bed provided the left boundary condition for the simulation. 
This approach avoided the complexities involved at the interface. Further, assumptions made in 
the simplified analysis (low speed) are justified in the bed away from the interface region. 

The drag coefficients obtained from this analysis are large. This is consistent with the observation 
that the macroscopic permeation rate is small even though the driving pressure difference is 
substantial. Figure 13 shows a typical comparison between the calculated pressure traces (using 
[50] with ~,---, 1) and the measurements. The shapes in the pressure traces are reproduced well using 
this simplified model. Better agreement could possibly be achieved by relaxing the isothermal 

tlnternational Mathematical and Statistical Libraries, Inc., Houston, TX. 
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assumption or assuming a nonconstant form of the drag coefficient (i.e. include velocity and density 
dependency). However, this simple model is adequate to establish the magnitude of the drag 
coefficient and support the conclusions of  this work. 

As described previously, the drag coefficient can also be obtained directly from the experimental 
record. In particular, [53] can be applied to the data record. An estimate of the rate of  pressurization 
at the wave head (~pc/StIPo<Ap~) can be obtained from the pressure trace of the middle gauge in 
the bed, gauge 3 (see figure 13). The arrival times of the permeation wave can be used to obtain 
an estimate of  the permeation rate and then [53] can be evaluated. These directly calculated drag 
coefficients are presented in figure 14. The drag coefficients obtained from fitting the low-speed 
calculations to the data are also shown for comparison. The measured drag coefficient for the 
highest permeation rate (highest maximum reservoir pressure) considered is significantly larger than 
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for the lower permeation rates (lower reservoir pressures). This trend is consistent with the 
Forchheimer equation, [1], that shows that as density (or pressure) and permeation rate increase, 
the drag coefficient increases. 

Neglecting the inertial term (second term of  the Forchheimer equation) we can obtain an estimate 
of  the permeability, 

#c [57] K - -  6 " 

For the lower permeation rates measured, the drag coefficient, 6, is about 2.0 x l0 s kg/m 3 s. 
Assuming/~G = 5.0 x 10 -5 kg/m s the permeability, x, is about 2.5 x 10 -13 m 2. This permeability 
is lower (higher drag coefficient) than correlations based on spherical particles. For  example, using 
the Carman-Kozeny expression (MacDonald et al. 1979) for permeability we get 
tc = 6.0 x 10-~3m 2 which is larger than the measured permeability. Other commonly used 
spherical-particle correlations predict even higher permeabilities. Lower permeabilities are expected 
for complex shaped particles since the flow path is more tortuous. 

These results compare well with correlations made in similar materials at lower pressures. For  
example, using the parameters assumed by Baer & Nunziato (1986) which are based on 
measurements made by Shepherd & Begeal (1988) we estimate the permeability to be 2.4 x 10 -~3 m 2 
compared to 2.5 x 10 -13 m E measured here (only a 4% difference). These results indicate that 
permeabilities do not change in unexpected ways in experiments driven with high reservoir 
pressures. 

6. RELEVANCE TO CONVECTIVE BURNING 

Our experiments were designed to measure the permeability of  a granular bed when it is subjected 
to an applied pressure jump at one end. We saw that a large initial pressure drop across the interface 
region leads to a very high initial flow speed into the bed. These dynamics were controlled by [20]. 
However, the porous bed combustion problems of  principal interest are wave problems, where the 
"interface" moves relative to the solid bed. An equation similar to [20] can also be derived in a 
reference frame attached to a steadily propagating compaction wave 

dM ~ M2{.(~- 1)M2+ 2 ~ f l ' ~  d t~ ,  [58] 

head with ( >  0 in the where M ~ :~ ( u c -  D)2/c~, D is the wave speed, ( =  0 at the wave 
undisturbed material. In deriving [58] we have assumed that compaction work goes exclusively to 
the solid. In the region where the solid has been compacted (i.e. ( <  0), uc is generally some 
significant fraction of  D with uc < D. From [58] we learn that the porosity gradient, d~bc/d( _> 0 
associated with a compaction wave moving towards ( > 0, acts as a nozzle that can drive changes 
in uc in the direction of  increasing (. Here we argue that the maximum gas velocity projected ahead 
of  the compaction wave is D. 

When D is of  the order of  the sound speed in the undisturbed gas (a typical situation), then in 
the region where the solid is compacted M ~ < 1 in the gas since u~ is some fraction of  D. Therefore, 
from [58] it follows that dM2/d(  < 0 and the moving interface (compaction wave) drives M ~ ~ 0 
(i.e. making uc = D in the region ahead of  the compaction wave). Thus the dynamics of  the 
interface do not propel gas ahead of  a compaction wave. This situation is analogous to a diverging 
nozzle. The decrease in the porosity produced by the compaction wave acts like an interface that 
is a virtual piston which leads to a gas phase wave of speed D + cc,0.~, where cc,0.b is the sound speed 
in the undisturbed gas. The typical speed we would see here is of the order of  500 m/s. The drag 
forces that we have measured would quickly reduce any such permeation wave to zero. Making 
the sound speed in the undisturbed gas greater (the situation if the material ahead of the wave were 
partially burned) will not change this conclusion. When CG0.b and cG are sufficiently less than D, 
then M: > 1 in the compacted region, and [58] leads to uc being reduced in the direction of the 
uncompacted solid. Thus, in this case, permeation is a moot point since there is no driving force 
to generate gas flow which is faster than the speed of  the interface. These results on moving 



948 B.w.  ASAY et al. 

interfaces (specifically compaction waves) along with the large drag coefficients that we found, 
make it highly unlikely that gas could permeate a significant distance ahead of this type of moving 
front. However, there are other conditions that also may be of interest. 

Compaction is severely inhibited in some experiments (e.g. Fifer & Cole 1981) used to study 
convective burning in which a granular explosive is loosely confined and placed in a large volume 
Crawford bomb. Such experiments yield a favorable nozzling effect (d~b~/d( ~< 0) behind the ignition 
front for permeation since decompaction occurs. The nozzling effect would accelerate the gas flow, 
as it does in the transient permeation experiment studied here. Under possible accident conditions 
damaged explosives are likely to be more confined. Under more confinement there would be no 
release to a nearly constant pressure as in the Crawford bomb. Consequently, pressure would rapidly 
build, yielding a compaction wave into the damaged explosive. When compaction occurs, high speed 
permeation becomes unlikely, as discussed above. The compaction dissipates energy by such 
processes as friction between particles and visco-plastic work and is driven by increasing pressures 
behind the wave. Thus, compaction provides an alternative mode of propagating energy forward. 
Still, convective burning may potentially be an important mechanism at very early times before 
compaction processes begin if burning is thermally initiated. However, in strong confinement it is 
likely that burning very quickly yields compaction waves that inhibit convective burning. If 
compaction processes initiate reaction, permeation probably does not play an important role. 

The results reported in this paper show that drag coefficients are very large in low-porosity 
(~bG ~< 0.3) granular material. A high drag coefficient corresponds to a very thin permeation layer 
(where the solid and gas speeds are not equal) ahead of the ignition front in a convective combustion 
wave. A thin permeation scale will yield a different wave structure than commonly assumed. 
Consequently, interpretations and conclusions of previous work will be affected. For example, 
Drew's (1986) approximate solutions of convective burning (no compaction) showed that thermal 
conductivity plays a leading role in the determination of the propagation rate, and a propagation 
speed that is relatively insensitive to interphase heat transfer and drag. Drew's approximate solution 
also yields propagation rates that are lower than experimentally observed. An important point is that 
Drew's conclusions are based on analysis based on a specified structure that includes deep permeation 
of the hot gases into the bed ahead of the ignition front. If the drag interaction is significantly different 
than commonly assumed, the structure (the permeation length scale) would change drastically and 
the conclusions based on the previous physical picture could be irrelevant. Our results suggest a much 
thinner permeation structure. As a consequence, the permeation layer may then influence the 
propagation rate significantly. Higher propagation rates are possible because convective heat transfer 
can potentially transport energy forward faster than diffusion. Gol'dshtein et al. (1994) recently 
considered flame propagation via barodiffusivity (permeation) only and showed by approximate 
analysis that the mechanism is possible. However, the approximate analysis of Gol'dshtein et al. is 
heuristic and merits a more detailed study. 

A significantly different physical picture of convective burning can be postulated based on our 
work. To sustain a very rapid convective wave, energy must be transported forward rapidly by 
convection through a thin permeation layer. To overcome the large resistance posed by the large drag 
coefficients, a steep pressure gradient is necessary to sustain this permeation. A large pressure gradient 
can be sustained near the ignition region when sufficiently rapid burning occurs within the granular 
bed due to the confinement between particles (large effective drag coefficients). It is easily shown that 
the burning of very small amounts of explosive yields high pressures under such confined conditions. 
For example, simple estimates show that burning a 1 pm shell yields pressures on the order of 
100 MPa in a 50 ~tm spherical hole in HMX. Therefore, the rate of reaction does not have to be 
extraordinarily high to promptly increase pressures. Further, the confinement would be largely 
maintained with only a small amount of solid converted to gas. The resulting pressure gradients 
would drive rapid permeation through thin regions ahead of the ignition point into the next layers of 
undisturbed particles. 

For this mechanism to exist, burning must occur within the bed. When the standoff distance of the 
gas phase flame is larger than the pore size, the flame can not spread into the bed since gas phase 
reaction is quenched by the cool particles, as postulated in the Russian literature (cf. Ermolaev et al. 
1975). The standoff distance decreases with pressure. At a critical pressure the standoff distance is 
sufficiently small that burning can occur in the granular bed. Convective burning experiments, where 



THE ROLE OF GAS PERMEATION IN CONVECTIVE BURNING 949 

compaction is inhibited, have exhibited rapid ejection of particles from the particle bed (cf. Fifer 
& Cole 1981). This implies a significant pressure rise in the wave with expansion into the large 
volume. This observation is consistent with the picture proposed here. However, a complete study 
of this postulated structure, including a study of the competing drag and reaction time scales, is 
beyond the scope of this study. 

Another implication of these results is that the asymptotic large-drag limit of full two-phase 
equations may be justifiable under many conditions, which is a significant simplification. Motivated 
by our experimental results, the large drag limit of full two phase equations has been considered 
recently (Bdzil et al. 1996c). The equations resulting from a large drag limit applied to a two-phase, 
two-velocity model have two favorable properties. First, the extremely narrow spatial scale 
associated with velocity equilibration does not have to be resolved. Accurate numerical results from 
the full two-velocity equations must resolve this very thin scale both spatially and temporally to 
get the proper momentum transfer between the phases. This presents serious numerical difficulties. 
Second, the equations have only a single bulk velocity. This simplifies the task of implementing 
such models in current multi-dimensional, multi-material hydrocodes that generally evolve only one 
velocity field as well as implementation of boundary conditions (Kober et al. 1995; Son et al. 1995). 
This large drag limit has been further justified in simulations of piston-initiated DDT by favorable 
comparisons between full two-velocity and the large drag model simulations (Bdzil et al. 1996c). 
These issues are discussed in more detail elsewhere (Bdzil & Son 1995; Bdzil et al. 1996c; Bdzil 
et al. 1996b; Bdzil et al. 1996a). 

7. CONCLUSIONS 

From this work we make the following major conclusions: (1) The results indicate that rapid 
and deep penetration of hot gases (many particle diameters) at high velocities does not occur for 
the conditions considered. Generally the porosity in damaged explosives is expected to be less than 
30% porosity studied here. Consequently, the conditions studied can be considered a worst-case 
for problems of interest. The measured permeability is consistent with lower pressure results in 
similar materials, but is significantly lower than predicted by correlations based on beds of spherical 
particles. (2) In these experiments rapid flow occurs near the interface region for short times, but 
is quickly decelerated. (3) The convective burning wave structure, when conditions allow its 
occurrence, will be significantly different than commonly postulated. In particular, a much thinner 
permeation layer than typically assumed is expected to occur. This is expected to change the 
conclusions arising from combustion analyses that assume a thick permeation layer. (4) When the 
low-speed permeation approximation is rationally derived assuming adiabatic conditions, drag 
dissipation cannot be neglected as commonly assumed. (5) The presence of a compaction wave will 
inhibit rapid permeation; analogous to a diverging nozzle for subsonic flow. Consequently, 
compaction processes likely play a more significant role in DDT than generally assumed. However, 
under special conditions (compaction-inhibited experiments or early times in a thermally ignited 
granular bed) convective burning can potentially still play a role. This should be further 
investigated. (6) An asymptotic limit of two-phase two-velocity models is justifiable for many cases 
of interest and may significantly simplify DDT modeling. 
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A P P E N D I X  

Slow-flow Approximation Under Adiabatic Conditions 

Again, we are interested in the time and distance scales that are large compared to the permeation 
scales tp and Xp. Introducing slow variables 

S ~ Eaz, y = Eb~ [A1] 

and scaled dependent variables 

P = & P d ,  R = d R I ,  U=EV,  [A2] 

[10]-[12] with the nozzling term dropped (applied to a bed of constant porosity), become 

Ea+f~sf 2 t- E I + b + f L  Oy (RfV) = 0, [A3] 

(l+fRf(Ea~. ~ ..~ ~l+bv(~V ~ Eo+al oea_ 
-0-fY,] + 7 8Y --,  V, [A41 
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and 
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7 ea ~-S  -~- e I + "-~--y j - d ea ~ + El a y ]  = e2(y -- 1)V2 [A5] 

where E << 1 is not related to the E used earlier, but rather is used here to measure the slowness of 
the flow. Retaining the full mass conservation equation [A3], yields 

a = 1 + b. [A6] 

Using the fact that empirical correlations on drag finds that in the momentum equation (negligible 
inertial terms) 

b + d = 1, [A7] 

from which it follows that 

Since, 

d + a = 2. [AS] 

1 + a + f >  1, it therefore follows that the least restrictive long-time scalings has 

d = 0 ,  b = l ,  a = 2 ,  f = 0 ,  [A9] 

which then obtains 

and yields the flow equations 

s--E2"r, y - -E~ ,  

P = O ( 1 ) ,  R = O ( 1 ) ,  U = E V ,  [AI0] 

and 

~3R 
O~- + ~yy (RV) = 0, [A111 

1 OP 
- V,  [A12] 

I(c~P v~P~ (P~(~R + vdR~ 
Ws + ay/ -  \R/kas ay,] = (? -- 1)1/2' [AI3] 

Importantly, the inertial terms in the momentum equation did not survive this limit, but all other 
terms suffer no approximation. Entropy production due to the drag remains in force; the flow is 
neither isothermal nor isentropic. Eliminating R and V from [A11]-[A13], yields the surprisingly 
simple result 

as t~y\ 8 y ] = 0 "  [AI4] 

This is a rationally derived low-speed flow result that only assumes adiabatic conditions. It shows 
that dissipation due to the drag interaction can not be neglected based on the slow-flow 
approximation, as done in previous work. 


